Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jian-Feng Wang,^a* Mei-Juan Fang,^a Hui-Qiong Huang,^b Gui-Ling Li,^b Wen-Jin Su^b and Yu-Fen Zhao^a

^aDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China, and ^bDepartment of Biology, Xiamen University, Xiamen 361005, People's Republic of China

Correspondence e-mail: jfwang@yanan.xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.007 Å R factor = 0.075 wR factor = 0.196 Data-to-parameter ratio = 10.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3,7,8-Trihydroxy-3-methyl-10-oxo-4,10dihydro-1*H*,3*H*-pyrano[4,3-*b*]chromene-9-carboxylic acid (fulvic acid) methanol 0.75-solvate

The title compound, $C_{14}H_{12}O_8.0.75CH_4O$, crystallizes in a centrosymmetric triclinic unit cell, which contains four independent essentially planar molecules and three methanol solvent molecules in the asymmetric unit. The molecules in the crystal are linked by a hydrogen-bonding network.

Comment

3,7,8-Trihydroxy-3-methyl-10-oxo-4,10-dihydro-1H,3Hpyrano[4,3-b]chromene-9-carboxylic acid (fulvic acid), (I) (Fig. 1), another yellow acidic metabolite, was isolated from *Paecilomyces sp.* Its formulation, having one more hydroxy group, differs from that of anhydrofulvic acid (Wang *et al.*, 2003).

The title compound crystallizes in a centrosymmetric triclinic unit cell, which contains four independent essentially planar molecules and three methanol solvent molecules in the asymmetric unit. The molecules in the crystal structure are linked by a hydrogen-bonding network (Table 1 and Fig. 2).

Figure 1

 $O\bar{R}TEP$ -3 (Farrugia, 1997) view of one independent molecule of (I), with the atom-numbering scheme and 50% probability displacement ellipsoids. H atoms are drawn as spheres of arbitrary radii.

Received 3 September 2003 Accepted 12 September 2003

Online 24 September 2003

Printed in Great Britain - all rights reserved

© 2003 International Union of Crystallography

Experimental

The title compound was isolated from *Paecilomyces sp.*, an endophytic fungus of *Cephalataxus fortunei*. Crystals were grown from methanol.

Z = 8

 $D_x = 1.521 \text{ Mg m}^-$

Mo $K\alpha$ radiation

reflections

 $\begin{array}{l} \theta = 2.2\text{--}19.4^{\circ} \\ \mu = 0.13 \ \mathrm{mm}^{-1} \end{array}$

T = 298 (2) K

Chunk, yellow

 $0.23 \times 0.15 \times 0.13~\text{mm}$

Cell parameters from 1065

Crystal data

 $\begin{array}{l} {\rm C}_{14}{\rm H}_{12}{\rm O}_8{\rm \cdot}0.75{\rm CH}_4{\rm O}\\ M_r = 332.27\\ {\rm Triclinic}, P\overline{1}\\ a = 12.4830 \left(7\right) {\rm \mathring{A}}\\ b = 12.6558 \left(8\right) {\rm \mathring{A}}\\ c = 19.0259 \left(13\right) {\rm \mathring{A}}\\ a = 94.608 \left(3\right)^{\circ}\\ \beta = 100.871 \left(3\right)^{\circ}\\ \gamma = 98.399 \left(3\right)^{\circ}\\ V = 2902.1 \left(3\right) {\rm \mathring{A}}^3 \end{array}$

Data collection

Bruker SMART APEX area-	9473 independent reflections
detector diffractometer	4625 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.052$
Absorption correction: multi-scan	$\theta_{\rm max} = 25.0^{\circ}$
(SADABS; Bruker, 2001)	$h = -14 \rightarrow 14$
$T_{\min} = 0.953, T_{\max} = 0.985$	$k = -14 \rightarrow 15$
14 782 measured reflections	$l = -22 \rightarrow 10$

Refinement

Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0668P)^2]$
$wR(F^2) = 0.196$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.002$
9473 reflections	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
873 parameters	$\Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bonding geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
O4A−H4A···O3A	0.82	1.57	2.389 (5)	173
$O6A - H6A \cdots O5A$	0.82	1.73	2.443 (5)	144
$O8A - H8A \cdots O8B$	0.82	2.06	2.860 (5)	166
$O4B - H4B \cdot \cdot \cdot O3B$	0.82	1.56	2.373 (5)	168
$O6B - H6B \cdots O5B$	0.82	1.73	2.449 (5)	146
$O4C - H4C \cdots O3C$	0.82	1.59	2.405 (5)	176
$O6C - H6C \cdot \cdot \cdot O5C$	0.82	1.73	2.456 (5)	147
$O4D - H4D \cdots O3D$	0.82	1.58	2.386 (5)	168
$O6D - H6D \cdots O5D$	0.82	1.70	2.435 (5)	148
$O7D - H7D \cdot \cdot \cdot O2$	0.82	1.85	2.618 (4)	155
$O8D - H8D \cdots O7B$	0.82	2.10	2.869 (5)	155
$O7A - H7A \cdots O8C^{i}$	0.82	2.04	2.768 (5)	148
$O7B - H7B \cdot \cdot \cdot O1^{ii}$	0.82	1.90	2.653 (5)	153
$O8B - H8B \cdot \cdot \cdot O7D^{iii}$	0.82	2.07	2.852 (4)	159
$O7C - H7C \cdot \cdot \cdot O3^{iv}$	0.82	1.90	2.655 (5)	152
$O8C - H8C \cdots O5B^{v}$	0.82	2.23	3.031 (5)	166
$O1-H1\cdots O5A^{vi}$	0.82	1.98	2.786 (5)	167
$O2-H2\cdots O5C^{vii}$	0.82	1.97	2.789 (5)	175
$O3-H3\cdots O5D^{viii}$	0.82	2.03	2.850 (5)	176

Symmetry codes: (i) x, 1 + y, z; (ii) 1 - x, 1 - y, -z; (iii) x - 1, y, z; (iv) x, y - 1, z; (v) -x, 1 - y, -z; (vi) 1 + x, y - 1, z; (vii) 1 - x, -y, 1 - z; (viii) 1 - x, 1 - y, 1 - z.

The H atoms were positioned geometrically (C–H = 0.93, 0.97 or 0.96 Å for phenyl, methylene or methyl H atoms, respectively, and O–H = 0.82 Å) and were included in the refinement in the riding-model approximation. The displacement parameters of phenyl and methylene H atoms were set to $1.2U_{eq}$ of their parent atoms, while those of methyl and O-bound H atoms were set to $1.5U_{eq}$.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 (Farrugia, 1997) and *ViewerPro* (Accelrys, 2001); software used to prepare material for publication: *SHELXL*97.

The authors thank the China Postodoctoral Science Foundation, the Natural Science Foundation of Fujian Province, China (grant No. C0110002), and the Key Foundation of Science & Technology Project of Fujian Province, China (grant No. 2002H011), for supporting this work.

References

- Accelrys (2001). ViewerPro. Version 4.2. Accelrys Inc., Burlington, Massachusetts, USA.
- Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, J.-F., Zhang, Y.-J., Fang, M.-J., Huang, Y.-J., Wei, Z.-B., Zheng, Z.-H., Su, W.-J. & Zhao, Y.-F. (2003). Acta Cryst. E59, 01244–01245.